Abstract

During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia.

Highlights

  • Actin polymerization at the plasma membrane results in the formation of cellular protrusions known as lamellipodia or filopodia, which mediate cell migration [1,2,3]

  • Different proteins control the assembly of these structures; in the lamellipodia, the branched nucleation is driven by activation of the Arp2/3 complex [8] by Wiskott-Aldrich syndrome protein family [9,10] (WASP), followed by filament elongation and barbed-end capping by capping proteins (CP) [11]

  • In the present work we study a system containing the major proteins participating in the assembly of lamellipodia and filopodia: a) the constitutively active VCA [26] domain of WASp; b) Arp2/3 complex; c) fascin, and d) actin monomers

Read more

Summary

Introduction

Actin polymerization at the plasma membrane results in the formation of cellular protrusions known as lamellipodia or filopodia, which mediate cell migration [1,2,3]. Our experiments show that in the early stages of actin polymerization, Arp2/3 mediates the formation of the dense and highly branched aster-like network, whereas fascin is rather passive. The first part of this section describes the three types of structures, i.e., asters, stars and network of bundles (a phase of actin-fascin bundles) that were experimentally observed and the transition between them.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.