Abstract

Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO+ species ([GaO+]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO+]a species with stronger Lewis acid sites produced a better synergism with moderate Brønsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga2O3 phase and small amounts of GaO+ species that are mainly located on the external surface ([GaO+]b), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples (Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield (i.e., 65.4wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.