Abstract

In the past few years, there has been a growing interest for aromaticity measures based on electron density descriptors, the para-delocalization (PDI) and the aromatic fluctuation (FLU) indexes being two recent examples. These aromaticity indexes have been applied successfully to describe the aromaticity of carbon skeleton molecules. Although the results obtained are encouraging, because they follow the trends of other existing aromaticity measures, their calculation is rather expensive because they are based on electron delocalization indexes (DI) that involve cumbersome atomic integrations. However, cheaper electron-sharing indexes (ESIs), which in principle could play the same role as the DI in such aromaticity calculations, can be found in the literature. In this letter we show that PDI and FLU can be calculated using fuzzy-atom bond order (FBO) measures instead of DIs with an important saving of computing time. In addition, a basis-set-dependence study is performed to assess the reliability of these measures. FLU and PDI based on FBO are shown to be both good aromaticity indexes and almost basis-set-independent measures. This result opens up a wide range of possibilities for PDI and FLU to also be calculated on large organic systems. As an example, the DI and FBO-based FLU and PDI indexes have also been calculated and compared for the C60 molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.