Abstract

More than a dozen cases of nonrigid van der Waals clusters are presented and discussed to demonstrate that cluster nonrigidity is a general phenomenon in all weakly bound systems. The interplay of structure and nonrigidity complicates cluster research and mandates a dynamical approach to cluster properties in which multiple stable configurations coexist and interconvert, and large amplitude nuclear motions are the rule rather than the exception. Empirical potential energy surface calculations are employed to yield physical insight into the structure and dynamics of nonrigid clusters, and molecular symmetry group theory is applied to analyze spectroscopic manifestations of cluster nonrigidity. Empirical potentials of various forms are successful in predicting most cluster structures, as well as estimating the potential surface barrier heights hindering the interconversion between different local minimum-energy structures. Such calculational approaches also emphasize the importance of large amplitude motion...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call