Abstract

Aromatic L-amino acid decarboxylase (AAAD) activity of rat retina increases when animals are placed in a lighted environment from the dark. The increase of activity can be inhibited by administering the selective dopamine D1 receptor agonist SKF 38393, but not the selective D2 agonist quinpirole, or apomorphine. Conversely, in the dark, enzyme activity can be enhanced by administering the selective D1 antagonist SCH 23390 or haloperidol, but not the selective D2 antagonist (-)-sulpiride. Furthermore, in animals exposed to room light for 3 h, the D1 agonist SKF 38393 reduced retinal AAAD activity, and this effect was prevented by prior administration of SCH 23390. In contrast, quinpirole had little or no effect when administered to animals in the light. Kinetic analysis indicated that the apparent Vmax for the enzyme increases with little change in the apparent Km for the substrate 3,4-dihydroxyphenylalanine or the cofactor pyridoxal-5'-phosphate. We suggest that dopamine released in the dark tonically occupies D1 receptors and suppresses AAAD activity. When the room light is turned on, D1 receptors are vacated and selective D1 agonists can either prevent the rise of AAAD or reverse light-enhanced AAAD activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.