Abstract

Chemical presodiation (CP) is an effective strategy to enhance energy density of sodium ion batteries. However, the sodiation reagents reported so far are basically polycyclic aromatic hydrocarbons (PAHs) wth low reductive potential (~0.1 V vs. Na+ /Na), which could easily cause over-sodiation and structural deterioration of the presodiated cathodes. In this work, Aromatic ketones (AKs) are rationally designed as mild presodiating reagents by introducing a carbonyl group (C=O) into PAHs to balance the conjugated and inductive effect. As the representatives, two compounds 9-Fluorenoneb (9-FN) and Benzophenone (BP) manifest favorable equilibrium potential of 1.55 V and 1.07 V (vs. Na+ /Na), respectively. Note that 9-FN demonstrates versatile presodiating capability toward multiple Na uptake hosts (tunneled Na0.44 MnO2 , layered Na0.67 Ni0.33 Mn0.67 O2 , polyanionic Na4 Fe2.91 (PO4 )2 P2 O7 , Na3 V2 (PO4 )3 and Na3 V2 (PO4 )2 F3 ), enabling greatly improved initial charging capacity of the cathode to balance the irrevisible capacity of the anode. Our results indicate that the Aromatic ketones are competitive presodiating cathodic reagents for high-performance sodium-ion batteries, and will inspire more studies and application attempts in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call