Abstract

Density functional theory calculations (M06-2X//B3LYP) have been performed to determine the factors responsible for enantioselectivity in Diels–Alder reactions catalysed by two series of camphor-derived amines. Hydrazides 2 and sulfonylhydrazides 3 catalyze the reaction of cyclopentadiene with cinnamaldehyde to give the same enantiomer of cycloadduct. The calculations reveal that the two classes of catalysts control enantioselectivity by opposite mechanisms. Hydrazides 2 favour addition to the bottom face of a trans iminium cation, while sulfonylhydrazides 3 favour addition to the top face of a cis iminium ion. In the transition state for cycloadditions catalysed by 2, a stabilising CH–π interaction between the diene and a benzyl substituent α to the iminium nitrogen accelerates the reaction and enhances the enantioselectivity. The facial selectivity can be reinforced by appending onto the benzyl side-arm an α-methyl group that sterically hinders addition to the top face.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.