Abstract

This study investigates the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3 prepared by nitriding an alumina-supported molybdenum oxide precursor with nitrogen hydrogen mixtures though temperature programming. The activity and selectivity of the catalyst toward aromatic hydrocarbons were determined in the pyrolysis-gas chromatography/mass spectrometry system. Results show that the catalyst has a significant function in the pyrolysis process. In the presence of the catalyst, the primary pyrolysis products from lignin are catalytically converted into aromatic products, benzene and toluene, as well as to an insignificant quantity of dimethylbenzene, ethylbenzene, trimethylbenzene, and naphthalene. The highest aromatic hydrocarbon yield of 17.5% is obtained using Mo2N/γ-Al2O3 (the catalyst-to-lignin weight ratio=4) at 700°C; by contrast, this yield is only 1.4% when no catalyst is used. Furthermore, the highest benzene yield of 70.1% is obtained using Mo2N/γ-Al2O3 (catalyst-to-lignin weight ratio=4) at 850°C. Under this condition, the monocyclic aromatic hydrocarbons together contribute >95% of the total aromatic hydrocarbon yield, whereas the selectivity toward naphthalene is only 2.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.