Abstract

Organic semiconductors integrating excellent charge transport with efficient solid emission are very challenging to be attained in the construction of light-emitting transistors and even for realization of electrically pumped organic lasers. Herein, we introduce naphthyl units at 2,6-positions of anthracene to achieve 2,6-di(2-naphthyl)anthracene (dNaAnt), which adopts J-aggregated mode in the solid state as a balanced strategy for excellent charge transporting and efficient solid state emission. Single crystal field-effect transistors show mobility up to 12.3 cm2·V-1·s-1 and a photoluminescence quantum yield of 29.2% was obtained for dNaAnt crystals. Furthermore, organic light-emitting transistors (OLETs) based on dNaAnt single crystals distribute outstanding balanced ambipolar charge transporting property (μh = 1.10 cm2·V-1·s-1, μe = 0.87 cm2·V-1·s-1) and spatially controllable emission, which is one of the best performances for OLETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call