Abstract
Nitroxide radicals are an emerging class of interesting compounds with versatile antioxidant and radioprotective properties. All literature studies have so far concentrated on compounds bearing only one nitroxide function. Here, we now investigate and compare the radical scavenging behaviour and antioxidant activity of aromatic indolinonic and aliphatic piperidine bis-nitroxides, i.e compounds bearing two nitroxide functions. Their corresponding mono-derivatives were also studied for comparison. Radical scavenging activity was investigated using EPR and UV–Vis spectroscopy by following spectral changes in acetonitrile of the nitroxides in the presence of alkyl and peroxyl radicals generated, respectively, under anoxic or aerobic conditions from thermal decomposition of AMVN [2,2′-azobis(2,4-di-methylvaleronitrile)]. Antioxidant activity of the nitroxides was evaluated by monitoring conjugated dienes (CD) formation during methyl linoleate micelles peroxidation and by measuring carbonyl content in oxidized bovine serum albumin (BSA). The results show that: (a) each nitroxide moiety in bis-nitroxides scavenges radicals independent of each other; (b) aliphatic nitroxides do not scavenge peroxyl radicals, at least under the experimental conditions used here, whereas indolinonic aromatic ones do: their stoichiometric number is 1.14 and 2.17, respectively, for mono- and bis-derivatives; (c) bis-nitroxides are roughly twice more efficient at inhibiting lipid peroxidation compared to their corresponding mono-derivatives. Although this study provides only comparative information on the relative radical-scavenging abilities of mono- and bis-nitroxides, it helps in understanding further the interesting reactivity of these compounds especially with regards to peroxyl radicals where many controversies in the literature exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.