Abstract

In plants, high carbon flux is committed to the biosynthesis of phenylalanine, tyrosine, and tryptophan, owing to their roles not only in the production of proteins, but also as precursors to thousands of primary and specialized metabolites. The core plastidial pathways that supply the majority of aromatic amino acids (AAAs) have previously been described in detail. More recently, the discovery of cytosolic enzymes contributing to overall AAA biosynthesis, as well as the identification of intracellular transporters and the continuing elucidation of transcriptional and post-transcriptional regulatory mechanisms, have revealed the complexity of this intercompartmental metabolic network. Here, we review the latest breakthroughs in AAA production and use the newest findings to highlight both longstanding and newly developed questions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.