Abstract

1. Mutants derived from the hydrogen bacterium Alcaligenes eutrophus strain H 16 auxotrophic for phenylalanine and tyrosine were isolated employing mutagenic agents (EMS, nitrite), the colistine counterselection technique and the "pin-point" isolation method. Three different types of mutants were found: (1) Mutants, requiring phenylalanine or phenylpyruvate for growth, were affected in chorismate mutase as well as prephenate dehydratase. Both activities were regained by reversion to prototrophy. The auxotrophic strains accumulated chorismic acid. (2) Strains with a growth response similar to that of the first group lacked only prephenate dehydratase activity which was partially regained by reversion. Chorismate mutase and prephenate dehydrogenase were derepressed up to two-fold. Mutants grown in minimal medium excreted prephenic acid. (3) The third type of mutants required phenylalanine or phenylpyruvate and grew slowly when supplemented with chorismate or prephenate. The enzymes involved in the specific pathway of phenylalanine and tyrosine were found to be present. Some of them were even more active than in the wild-type. 2. Mutants accumulating chorismic acid or prepheric acid were able to grow on minimal medium when incubated long enough. The chemical instability of the excretion products resulted in their nonenzymatic conversion to subsequent intermediates which were taken up by the cells, allowing growth. 3. A method is described for preparing barium prephenate using the auxotrophic mutant 6B-1 derived from A.eutrophus H 16. Prephenic acid, excreted by this strain, was obtained from the culture filtrate with a purity of at least 70% and a yield of approximately 180 mg per 21 of medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.