Abstract

The microorganisms involved in cheese ripening produce various volatile compounds and induce typical flavors that contribute to cheese variety. To investigate aroma compound generation of cheese microflora, we used a dynamic headspace-gas chromatography-mass spectrometry analysis. To obtain good sensitivity and repeatability of quantification, dynamic headspace conditions and sample preparation were first optimized and led to an extraction set up in which samples were heated at 60°C and diluted with water without pH adjustment. Then three different yeasts and three Geotrichum candidum commonly used in mold surface ripened cheeses were studied in pure culture in a cheese model medium. Thirty-nine cocultures of these three yeasts, the three G. candidum, and five bacteria were studied in the same medium to assess the interaction between microorganisms on aroma compound production. Twenty-four volatile compounds belonging to different chemical classes (alcohols, aldehydes, esters, sulfides, terpenes) were identified and quantified. Yeasts and especially Kluyveromyces lactis produced large amounts of alcohols, aldehydes, esters, and terpenes when cultured alone or in association. Geotrichum candidum and especially G. candidum strain G3 generated the largest amount of sulfides when cultured alone or in association. Finally, bacteria also produced aroma compounds but, except for Brevibacterium linens strain B5, which produced dimethyl trisulfide and ketones, no specific trend in the production of particular aroma compounds could be evidenced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call