Abstract
The neuronal nitric oxide synthase (nNOS) specific inhibitor, 7-nitroindazole (7-NI), and the nitric oxide (NO) donor ( S-nitroso- N-acetylpenicillarnine, SNAP) were used to study the role of NO in polychlorinated biphenyl (PCB: Aroclor 1254)-induced cytotoxicity in the immortalized dopaminergic cell line (CATH.a cells), derived from the central nervous system of mice. Treatment of the dopaminergic cells with various concentrations of Aroclor 1254 (0.5–10 μg/ml), a commercial PCB mixture, showed significant cytotoxicity as evaluated by lactate dehydrogenase (LDH) release and assessment of cell viability, depending on the concentration used. We also observed that Aroclor 1254 treatment reduced the level of nNOS expression. Furthermore, the cytotoxicity of Aroclor 1254 was augmented by 10 μM of 7-NI, which alone did not produce cytotoxicity, while it was protected by treatment with SNAP. Depending on the concentrations of Aroclor 1254 used, intracellular dopamine and dihydroxyphenylacetic acid (DOPAC) concentrations were significantly decreased. Therefore, these results suggest that PCBs have the potential for dopaminergic neurotoxicity, which may be related with the PCBs-mediated alteration of NO production originating from nNOS at least in part.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.