Abstract

We focus on the seemingly complicated dynamics of a four-machine power system which is undergoing a sudden fault. Adopting a Hamiltonian (energy) formulation, we consider the system as an interconnection of (one degree of freedom) subsystems. Under certain configuration (a star network) and parameter values we establish the presence of Arnold diffusion which entails periodic, almost periodic, and complicated nonperiodic dyanmics all simultaneously present; and erratic transfer of energies between the subsystems. In section 1 we introduce the transient stability problem in a mathematical setting and explain what our results mean in the power systems context. Section 2 provides insights into Arnold diffusion and summarizes its mathematical formulation as in [8], [1]. Section 3 gives conditions for which Arnold diffusion arises on certain energy levels of the swing equations. These conditions are verified analytically in the case when all but one subsystem (machine) undergo relatively small oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.