Abstract
Abstract The high-pressure behavior of a natural armstrongite [(Ca0.96Ce0.01Yb0.01)Zr0.99Si6O14.97·2.02H2O, a∼14.03 A, b∼14.14 A, c∼7.85 A, β∼109.4°, Sp. Gr. C2/m], a microporous heterosilicate, has been studied by single-crystal X-ray diffraction with a diamond-anvil cell up to 8 GPa, using the methanol:ethanol:H2O = 16:3:1 mixture as a pressure-transmitting fluid. A first-order phase transition, characterized by a triplication of the unit-cell volume, was detected between 4.01 (5) and 5.07 (5) GPa. The isothermal bulk modulus (KV0 = -V (∂P/∂V)) of the high-pressure polymorph was found to be ∼50% higher than that obtained for the low-pressure one (i.e., KV0 = 45 (1) GPa for the high-pressure polymorph, KV0 = 31.2 (6) GPa for the low-pressure polymorph), indicating a remarkable change in the structure compressibility. The mechanisms at the atomic scale, which govern the structure deformation of the low-P polymorphs, are described based on a series of structure refinements up to 4 GPa, and a comparison with those experienced by the structure at high temperature is provided. As observed for other microporous silicates, the polyhedral tilting is the main deformation mechanism able to accommodate the effects of the applied pressure. No evidence of crystal-fluid interaction, with a selective sorption of molecules of the pressure-transmitting fluid through the cavities, was observed at high pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.