Abstract
This paper presents a new method for determining ARMA model parameters using Particle Swarm Optimization (PSO). PSO is a new optimization method that is based on a social-psychological metaphor. Each ARMA model is represented as a particle in the particle swarm. Particles in a swarm move in discrete steps based on their current velocity, memory of where they found their personal best fitness value, and a desire to move toward where the best fitness value that was found so far by all of the particles during a previous iteration. PSO is applied for determining the ARMA parameters for the Wolfer Sunspot Data. The method is extended using Akaike's Information Criterion (AIC). PSO is used to simultaneously optimize and select an estimated “best approximating ARMA model” based on AIC. Several plots are included to illustrate how the method converges for various PSO parameter settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.