Abstract

The integral of a time-domain diffraction operator which has an integrable inverse-root singularity and an infinite tail is numerically differentiated to get a truncated digital form of the operator. This truncated difference operator effectively simulates the singularity but is computationally inefficient and produces a convolutional truncation ghost. The authors therefore use a least-squares method to model an equivalent autoregressive moving-average (ARMA) filter on the difference operator. The recursive convolution of the ARMA filter with a wavelet has no truncation ghost and an error below 1% of the peak diffraction amplitude. Design and application of the ARMA filter reduces computer (CPU) time by 42% over that repaired with direct convolution. A combination of filter design at a coarse spatial sampling, angular interpolation of filter coefficients to a finer sampling, and recursive application reduces CPU time by 83% over direct convolution or 80% over Fourier convolution, which also has truncation error.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.