Abstract

Modular multilevel converters (MMCs) have established their position as the choice of next-generation high voltage converters. These converters, however, require a bulk number of sensors in each phase for sub-modules (SMs) voltage balancing. A limited number of studies are found in the literature where the number of sensors is reduced by incorporating observers to estimate the SM voltages. Nonetheless, most of these methods require accurate measurements of the arm voltage. Thus, the dependence on sensors is not completely eliminated. In this paper, a Kalman-filter-based estimation of SM voltages is presented, which does not require any voltage sensor to measure the arm voltage. Therefore, this method considerably simplifies the implementation of MMCs. Extensive simulations and experimental test cases are conducted to validate the performance of the proposed SM voltage estimation method. The performance assessments verify the accuracy and robustness of the proposed method for various test scenarios performed over a wide range of sampling frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.