Abstract

Wireless interference management through continuous power control has been extensively studied in the literature. However, practical systems often adopt discrete power control with a limited number of power levels and MCSs (Modulation Coding Schemes). In general, discrete power control is NP-hard due to its combinatorial nature. To tackle this challenge, we propose an innovative approach of interference management: ARM (Anonymous Rating Mechanism). Inspired by the successes of the simple Anonymous Rating Mechanism in Internet and E-commerce, we develop ARM as distributed near-optimal algorithm for solving the discrete power control problem (i.e., the joint scheduling, power allocation, and modulation coding adaption problem) under the physical interference model. We show that ARM achieves a close-to-optimal network throughput with a very low control overhead. We also characterize the performance gap of ARM due to the loss of rating information, and study the trade-off between such gap and the convergence time of ARM. Through comprehensive simulations under various network scenarios, we find that the optimality gap of ARM is small and such a small gap can be achievable with only a small number of power levels. Furthermore, the performance degradation is marginal if only limited local network information is available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call