Abstract

We describe the ARKODE library of one-step time integration methods for ordinary differential equation (ODE) initial-value problems (IVPs). In addition to providing standard explicit and diagonally implicit Runge–Kutta methods, ARKODE supports one-step methods designed to treat additive splittings of the IVP, including implicit-explicit (ImEx) additive Runge–Kutta methods and multirate infinitesimal (MRI) methods. We present the role of ARKODE within the SUNDIALS suite of time integration and nonlinear solver libraries, the core ARKODE infrastructure for utilities common to large classes of one-step methods, as well as its use of “time stepper” modules enabling easy incorporation of novel algorithms into the library. Numerical results show example problems of increasing complexity, highlighting the algorithmic flexibility afforded through this infrastructure, and include a larger multiphysics application leveraging multiple algorithmic features from ARKODE and SUNDIALS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call