Abstract

AbstractRecently, many cryptographic primitives such as homomorphic encryption (HE), multi-party computation (MPC) and zero-knowledge (ZK) protocols have been proposed in the literature which operate on the prime field $${\mathbb {F}}_p$$ F p for some large prime p. Primitives that are designed using such operations are called arithmetization-oriented primitives. As the concept of arithmetization-oriented primitives is new, a rigorous cryptanalysis of such primitives is yet to be done. In this paper, we investigate arithmetization-oriented APN functions. More precisely, we investigate APN permutations in the CCZ-classes of known families of APN power functions over the prime field $${\mathbb {F}}_p$$ F p . Moreover, we present a class of binomial permutation having differential uniformity at most 5 defined via the quadratic character over finite fields of odd characteristic. Computationally it is confirmed that the latter family contains new APN permutations for some small parameters. We conjecture it to contain an infinite subfamily of APN permutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.