Abstract
We analyze the deformation theory of equivariant vector bundles. In particular, we provide an effective criterion for verifying whether all infinitesimal deformations preserve the equivariant structure. As an application, using rigidity of the Frobenius homomorphism of general linear groups, we prove that projectivizations of Frobenius pullbacks of tautological vector bundles on Grassmanians are arithmetically rigid, that is, do not lift over rings where $$p \ne 0$$ . This gives the same conclusion for Totaro’s examples of Fano varieties violating Kodaira vanishing. We also provide an alternative purely geometric proof of non-liftability mod $$p^2$$ and to characteristic zero of the Frobenius homomorphism of a reductive group of non-exceptional type. In the appendix, written jointly with Piotr Achinger, we provide examples of non-liftable Calabi–Yau varieties in every characteristic $$p \geqslant 5$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.