Abstract

Previous findings have suggested that number processing involves a mental representation of numerical magnitude. Other research has shown that sensory experiences are part and parcel of the mental representation (or "simulation") that individuals construct during reading. We aimed at exploring whether arithmetic word-problem solving entails the construction of a mental simulation based on a representation of numerical magnitude. Participants were required to solve word problems and to perform an intermediate figure discrimination task that matched or mismatched, in terms of magnitude comparison, the mental representations that individuals constructed during problem solving. Our results showed that participants were faster in the discrimination task and performed better in the solving task when the figures matched the mental representations. These findings provide evidence that an analog magnitude-based mental representation is routinely activated during word-problem solving, and they add to a growing body of literature that emphasizes the experiential view of language comprehension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call