Abstract

An arithmetic framework for string compactification is described. The approach is exemplified by formulating a strategy that allows to construct geometric compactifications from exactly solvable theories at c = 3. It is shown that the conformal field theoretic characters can be derived from the geometry of space–time, and that the geometry is uniquely determined by the two-dimensional field theory on the worldsheet. The modular forms that appear in these constructions admit complex multiplication, and allow an interpretation as generalized McKay–Thompson series associated to the Mathieu and Conway groups. This leads to a string motivated notion of arithmetic moonshine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.