Abstract
A lacunary series is a Taylor series with large gaps between its non-zero coefficients. In this thesis we exploit these gaps to obtain results of linear independence of values of lacunary series at integer points. As well, we will study different methods found in Diophantine approximation which we use to study arithmetic properties of values of lacunary series at algebraic points. Among these methods will be Mahler’s method and a new approach due to Jean-Paul Bezivin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.