Abstract
Van der Waerden [1, 4, 5] proved that if the nonnegative integers are partitioned into a finite number of sets, then at least one set in the partition contains arbitrarily long finite arithmetic progressions. This is equivalent to the result that a strictly increasing sequence of integers with bounded gaps contains arbitrarily long finite arithmetic progressions. Szemerèdi [3] proved the much deeper result that a sequence of integers of positive density contains arbitrarily long finite arithmetic progressions. The purpose of this note is a quantitative comparison of van der Waerden's theorem and sequences with bounded gaps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.