Abstract

A new European research project aims to develop a microprocessor based on the logarithmic number system, in which a real number is represented as a fixed-point logarithm. Multiplication and division therefore proceed in minimal time with no rounding error. However, the system can only offer an overall advantage over floating-point if addition and subtraction can be performed with speed and accuracy at least equal to that of floating-point, but these operations require the interpolation of a nonlinear function which has hitherto been either time-consuming or inaccurate. We present a procedure by which additions and subtractions can be performed rapidly and accurately and show that these operations are thereby competitive with their floating-point equivalents. We then present some large-scale case studies which show that the average performance of the LNS exceeds floating-point, in terms of both speed and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.