Abstract
It is known that under the Dirichlet product, the set of arithmetic functions in several variables becomes a unique factorization domain. A. Zaharescu and M. Zaki proved an analog of the ABC conjecture in this ring and showed that there exists a non-trivial solution to the Fermat equation $$z^n=x^n+y^n$$ ($$n\ge 3$$). It is also known that under the Cauchy product, the set of arithmetic functions becomes a unique factorization domain. In this paper, we consider the ring of arithmetic functions in several variables under the Cauchy product and prove an analog of the ABC conjecture in this ring to show that there exists a non-trivial solution to the Fermat equation $$z^n=x^n+y^n$$ ($$n\ge 3$$).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.