Abstract
Block cyclic redundancy check (CRC) codes are typically used to perform error detection in automatic repeat request (ARQ) protocols for data communications. Although efficient, CRCs can detect errors only after an entire block of data has been received and processed. We propose a new continuous error detection scheme using arithmetic coding that provides a novel tradeoff between the amount of added redundancy and the amount of time needed to detect an error once it occurs. This method of error detection, first introduced by Bell, Witten, and Cleary (1990), is achieved through the use of an arithmetic codec, and has the attractive feature that it can be combined physically with arithmetic source coding, which is widely used in state of-the-art image coders. We analytically optimize the tradeoff between added redundancy and error-detection time, achieving significant gains in bit rate throughput over conventional ARQ schemes for binary symmetric channel models for all probabilities of error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.