Abstract

Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.