Abstract

For discrimination between arginine and 19 other amino acids in aminoacylation of tRNA(Arg)-C-C-A by arginyl-tRNA synthetase from baker's yeast, discrimination factors (D) have been determined from kcat and Km values. The lowest values were found for Trp, Cys, Lys (D = 800-8500), showing that arginine is 800-8500 times more often incorporated into tRNA(Arg)-C-C-A than noncognate acids at the same amino acid concentrations. The other noncognate amino acids exhibit D values between 10,000 and 60,000. In aminoacylation of tRNA(Arg)-C-C-A(3'NH2) discrimination factors D1 are in the range 10-600. From these values and AMP formation stoichiometry, pretransfer proof-reading factors II1 were determined; from D values and AMP stoichiometry in aminoacylation of tRNA(Arg)-C-C-A, posttransfer proof-reading factors II2 could be calculated, II1 values between 2 and 120 show that pretransfer proof-reading is the main correction step, posttransfer proof-reading (II2 approximately 1-10) plays a marginal role. Initial discrimination factors due to different Gibbs free energies of binding between arginine and the noncognate amino acids were calculated from discrimination and proof-reading factors. According to a two-step binding process, two factors (I1 and I2) were determined. They can be related to hydrophobic interaction forces and hydrogen bonds that are especially formed by the arginine side chain. A hypothetical 'stopper' model of the amino acid recognition site is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.