Abstract

Ten normal males rested sitting upright at an air temperature of 28 degrees C for 5.5 h (control, C) and underwent 4 h of graded water immersion (WI) to the umbilicus (UI), to the chest (CI), and to the neck (NI), respectively (water temperature = 34.5 degrees C), on different experimental days. Plasma arginine vasopressin (PAVP) was suppressed during WI compared with C and maximally so during NI. However, there was no change in PAVP comparing CI with UI even though central venous pressure (CVP) increased. CVP increased during CI and NI compared with C but was unchanged during UI, whereas cardiac output (rebreathing method), stroke volume, and plasma volume increased to approximately the same level during all three steps of WI compared with C. Heart rate and total peripheral vascular resistance decreased during UI, CI, and NI. Systolic arterial pressure (SAP) and pulse pressure (PP) were increased gradually from prestudy related to the degree of WI. Also diuresis, natriuresis, kaliuresis, osmotic excretion, and clearance were increased gradually compared with C, whereas free water clearance (CH2O) gradually decreased. There were weak negative but statistically significant correlations between PAVP and CVP and between changes in PAVP from prestudy and corresponding changes in SAP and PP. Furthermore, a statistically significant and negative correlation between CH2O and natriuresis could be established. We conclude that graded immersion gradually increases central blood volume and decreases PAVP. However, not only cardiopulmonary mechanoreceptors but also arterial baroreceptors may play a role in AVP suppression during WI in humans. In hydropenic subjects the suppression of PAVP during WI is apparently not effective in counteracting the decrease in CH2O induced by increased solute excretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call