Abstract

Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors, which mediate interferon (IFN), interleukin, and some growth factor and peptide hormone signaling in cells. IFN stimulation results in tyrosine phosphorylation, dimerization, and nuclear import of STATs. In response to IFN-gamma stimulation, STAT1 forms homodimers, whereas IFN-alpha induction results in the formation of STAT1.STAT2 heterodimers, which assemble with p48 protein in the nucleus. Phosphorylation as such is not sufficient to target STATs into the nucleus; rather, the dimerization triggered by phosphorylation is essential. Although IFN-induced nuclear import of STATs is mediated by the importin/Ran transport system, no classic nuclear localization signal (NLS) has been found in STATs. In the three-dimensional structure of STAT1, we observed a structural arginine/lysine-rich element within the DNA-binding domain of the molecule. We created a series of point mutations in these elements of STAT1 and STAT2 and showed by transient transfection/IFN stimulation assay that this site is essential for the nuclear import of both STAT1 and STAT2. The results suggest that two arginine/lysine-rich elements, one in each STAT monomer, are required for IFN-induced nuclear import of STAT dimers. Import-defective STAT1 and STAT2 proteins were readily phosphorylated and dimerized, but they functioned as dominant negative molecules inhibiting the nuclear import of heterologous STAT protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.