Abstract

Nitric oxide (NO) produced by islet constitutive NO synthase (cNOS) is a putative modulator of islet hormone secretion. We show here for the first time that the release of insulin induced by L-arginine or L-homoarginine is inhibited and that of glucagon stimulated in parallel with the rate of islet NO production. It was found that L-homoarginine was approximately 25-30% less potent than L-arginine as an insulin secretagogue but equally potent as a glucagon secretagogue. Biochemical determination of islet cNOS activity revealed that the NO production with L-homoarginine as substrate was only approximately 40% of that of L-arginine. Selective inhibition of islet cNOS potentiated insulin release during amino acid stimulation. Moreover, inhibition of cNOS suppressed glucagon release, more so with L-arginine than with L-homoarginine as secretagogue, reflecting the relative rates of their NO production. In K+-depolarized islets, inhibition of cNOS enhanced the insulin response to L-arginine by 50% and that to L-homoarginine by 23%, largely corresponding to their relative NO production. The intracellular NO donor hydroxylamine dose dependently inhibited insulin but increased glucagon secretion in K+-depolarized and amino acid-stimulated islets. We conclude that both amino acids have a dual action on insulin release, since their stimulatory effects are reduced in parallel with the rates of their NO production. Furthermore, the greater NO production induced by L-arginine relative to L-homoarginine corresponds to NO-mediated increases in glucagon release. These NO effects are mainly exerted independently of membrane depolarization events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.