Abstract
Ferroptosis is a newly characterized form of programmed cell death. The fundamental biochemical feature of ferroptosis is the lethal accumulation of iron-catalyzed lipid peroxidation. It has gradually been recognized that ferroptosis is implicated in the pathogenesis of a variety of human diseases. Increasing evidence has shed light on ferroptosis regulation by amino acid metabolism. Herein, we report that arginine deprivation potently inhibits erastin-induced ferroptosis, but not RSL3-induced ferroptosis, in several types of mammalian cells. Arginine presence reduces the intracellular glutathione (GSH) level by sustaining the biosynthesis of fumarate, which functions as a reactive α,β-unsaturated electrophilic metabolite and covalently binds to GSH to generate succinicGSH. siRNA-mediated knockdown of argininosuccinate lyase, the critical urea cycle enzyme directly catalyzing the biosynthesis of fumarate, significantly decreases cellular fumarate and thus relieves erastin-induced ferroptosis in the presence of arginine. Furthermore, fumarate is decreased during erastin exposure, suggesting that a protective mechanism exists to decelerate GSH depletion in response to pro-ferroptotic insult. Collectively, this study reveals the ferroptosis regulation by the arginine metabolism and expands the biochemical functionalities of arginine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.