Abstract

Bacterial-based cancer immunotherapy has recently gained widespread attention due to its exceptional mechanism of rich pathogen-associated molecular patterns in anti-cancer immune responses. Contrary to conventional cancer therapies such as surgery, chemotherapy, radiation and phototherapy, bacteria-based cancer immunotherapy has the unique ability to suppress cancer by selectively accumulating and growing in tumours. In the view of this, several bacterial strains are being used for the treatment of cancer. Of which, lactic acid bacteria are a powerful, albeit still inadequately understood bacteria thatpossess a widesource of bioactive chemicals. Lactic acid bacteria metabolites, such as bacteriocins, short-chain fatty acids, exopolysaccharides show antitumour property. Amino acid pathways, which have lately been focussed as a new strategy to cancer therapy, are key element of the adaptability and dysregulation of metabolic pathways identified in proliferation of tumour cells. Arginine metabolism, in particular, has been shown to be critical for cancer therapy. As a result, better understanding of arginine metabolism in LAB and cancer cells could lead to new cancer therapeutic targets. Thisreviewwill outline current advances in the interaction of arginine metabolism with cancer therapy and propose an arginine deiminase expression system to combat cancer more effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call