Abstract

Seasonal dynamics of in situ gross nitrogen (N) mineralization rates were measured using the 15N-NH4+ isotope dilution method in a Danish soil subjected to four different agricultural practices (set aside, barley, winter wheat and clover). Results were compared to arginine ammonification in the soil samples measured as NH4+ production following addition of excess (1 mM) arginine. In the set aside, barley, winter wheat and clover soils the average annual rates of gross N mineralization (0.29, 0.60, 1.34 and 1.75 µg NH4+-N g–1 day–1, respectively) and arginine ammonification activity (0.21, 0.55, 0.88, and 1.33 µg NH4+-N g–1 h–1, respectively) were well correlated. Furthermore, the seasonal variations of gross N mineralization and arginine ammonification activities were very similar, showing rapid responses to rainfall and generally higher activities in wetted soils. As tested in the laboratory, the arginine ammonification activity correlated well with heterotrophic microbial respiration activity (CO2 production) in soil samples and further displayed a simple, one-component Michaelis-Menten kinetics with a high affinity for arginine (Km value of 48 µM ±5 µM) as determined from non-linear parameter estimation. This indicated that arginine ammonification activity was primarily due to microorganisms, and the activity was also shown to be at a minimum in sterile soil samples. All evidence thus supported that our standard assay of arginine ammonification activity provides a good index of gross N mineralization rates by the microorganisms in soil under in situ conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call