Abstract

Endothelial dysfunction (EnD) occurs with aging and endothelial nitric oxide (NO) production by NO synthase (NOS) can be impaired. Low NO levels have been linked to increased arginase (Ar) activity as Ar competes with NOS for L-arginine. The inhibition of Ar activity can reverse EnD and (−)-epicatechin (Epi) inhibits myocardial Ar activity. In this study, through in silico modeling we demonstrate that Epi interacts with Ar similarly to its inhibitor Norvaline (Norv). Using in vitro and in vivo models of aging, we examined Epi and Norv-inhibition of Ar activity and its endothelium-protective effects. Bovine coronary artery endothelial cells (BCAEC) were treated with Norv (10 μM), Epi (1 μM) or the combination (Epi + Norv) for 48 h. Ar activity increased in aged BCAEC, with decreased NO generation. Treatment decreased Ar activity to levels seen in young cells. Epi and Epi + Norv decreased nitrosylated Ar levels by ~25% in aged cells with lower oxidative stress (~25%) (dihydroethidium) levels. In aged cells, Epi and Epi + Norv restored the eNOS monomer/dimer ratio, protein expression levels and NO production to those of young cells. Furthermore, using 18 month old rats 15 days of treatment with either Epi (1 mg/kg), Norv (10 mg/kg) or combo, decreased hypertension and improved aorta vasorelaxation to acetylcholine, blood NO levels and tetra/dihydribiopterin ratios in cultured rat aortic endothelial cells. In conclusion, results provide evidence that inhibiting Ar with Epi reverses aged-related loss of eNOS function and improves vascular function through the modulation of Ar and eNOS protein levels and activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.