Abstract

The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.

Highlights

  • Cells require energy to carry out their vital functions

  • Since the rate of diffusion of O2 and CO2 through the alveolar-capillary barriers is proportional to the exchange area, but inversely proportional to its thickness, no excess leakage of liquid should occur in the interstitium and subsequently in the alveolar space, since this would dramatically impair gas exchange between the alveoli and the pulmonary capillaries

  • Both the arginase inhibitor BEC and the Protein Kinase C (PKC)-α inhibitor Ro32-4032 can blunt pneumolysin-induced endothelial hyperpermeability in HL-MVEC in vitro. These results are substantiated in vivo, since arginase 1+/−/arginase 2−/−, but not arginase 1+/+/arginase 2−/− mice [60] are significantly protected from pneumolysin-induced capillary leak [56]. These results demonstrate an important role for arginase 1 in pneumolysin-induced barrier dysfunction in HL-MVEC

Read more

Summary

Introduction

Cells require energy to carry out their vital functions. Mitochondrial oxidative phosphorylation is the main pathway through which cellular ATP is generated, provided that an adequate and continuous amount of O2 is supplied to the mitochondria. TGF-β2 was shown to impact cytokine-induced NO production in primary small airway epithelial cells, by enhancing total arginase activity and reducing iNOS mRNA and protein levels, through a Rho kinase-dependent pathway [21].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call