Abstract

We examined the replication fidelity of an Arg660Ser (R660S) mutant of Thermus aquaticus DNA polymerase I (Taq pol I). In a forward mutation assay, R660S showed a marked reduction in T-->C transitions, one of the most frequent errors made by the wild-type enzyme. Steady-state kinetics showed that R660S discriminates against dGTP incorporation at a template T 13-fold better than the wild-type. R660S was also 3.2-fold less efficient than the wild-type at extending a T:dG mismatch. These results indicate that R660S has enhanced fidelity during incorporation and extension, which reduces its T-->C transition frequency. Interestingly, R660S also discriminated correct from incorrect nucleotides at the incorporation step of C:dATP, A:dATP, G:dATP and C:8-OH-dGTP mispairs 28-, 6.0-, 4.1- and 6.8-fold better, respectively, than the wild-type, although it may not always be as accurate as the wild-type at the extension step. A structural model suggests that Arg660 may participate in two interactions that influence fidelity; the guanidinium group of Arg660 might interact with the incoming guanine base at the major groove and it might compete for forming another interaction with the primer terminus. Substituting Arg with Ser may eliminate or alter these interactions and destabilize the closed complex with incorrect substrates. Our data also suggest that T:dGTP and C:dATP base pairs form 'wobble' structures at the incorporation step of Taq pol I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.