Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged beta-coronavirus that enter cells via two routes, direct fusion at the plasma membrane or endocytosis followed by fusion with the late endosome/lysosome. While the viral receptor, ACE2, multiple entry factors and the mechanism of fusion of the virus at the plasma membrane have been investigated extensively, viral entry via the endocytic pathway is less understood. By using a human hepatocarcinoma cell line, Huh-7, which is resistant to the antiviral action of the TMPRSS2 inhibitor camostat, we discovered that SARS-CoV-2 entry is not dependent on dynamin but on cholesterol. ADP-ribosylation factor 6 (ARF6) has been described as a host factor for SARS-CoV-2 replication and is involved in the entry and infection of several pathogenic viruses. Using CRISPR/Cas9 genetic deletion, a modest reduction in SARS-CoV-2 uptake and infection in Huh-7 was observed. In addition, pharmacological inhibition of ARF6 with the small molecule NAV-2729 showed a dose-dependent reduction of viral infection. Importantly, NAV-2729 also reduced SARS-CoV-2 viral loads in more physiological models of infection: Calu-3 cells and kidney organoids. This highlighted a role for ARF6 in multiple cell contexts. Together, these experiments point to ARF6 as a putative target to develop antiviral strategies against SARS-CoV-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.