Abstract

The retinoblastoma (RB) tumor suppressor gene occupies central roles in cell cycle control and tumor suppression [1]. Homozygous mutant (Rb−/−) embryos die at E13.5–E15.5 [2–4], exhibiting extensive apoptosis and inappropriate S phase entry in the central and peripheral nervous systems, liver, and ocular lens [2–6]. Mice simultaneously mutant for Rb and other genes can be generated to assess the requirement for these genes in cell cycle control and apoptosis. Using such analysis, E2f-1, E2f-3, p53, and Id2 have been identified as important regulators of cell cycle control and apoptosis in Rb−/− embryos [7–10]. Because unrestrained E2F activity in the absence of Rb function contributes to p53-dependent apoptosis in many systems [7, 9, 11–14], we wished to identify genes linking deregulated E2F activity to p53 activation and subsequent apoptosis. As a transcriptional target of E2F-1 [15–18], a regulator of p53 [19–21], and an important mediator of apoptosis [20–26], ARF was a strong candidate for such a role, especially since it can be upregulated in the absence of Rb[21]. From the analysis of Rb/ARF compound mutants we demonstrate that ARF is not an obligatory link between Rb inactivation and p53-dependent apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.