Abstract

The authors characterized on a molecular level the clofibrate-inducible 26-kDa integral peroxisomal membrane protein (Pmp26p, Pex11-1p) of rat liver. By screening cDNA databases with the obtained Pex11-1p-cDNA, a second homologous cDNA was identified that codes for a polypeptide with slightly larger molecular mass than Pex11-1p. The authors call this polypeptide Pex11-2p. Studies on the topology of Pex11-1p revealed two transmembrane domains with the N- and C-terminus facing the cytoplasm. The C-terminal tail of Pex11-1p ends in a consensus dilysine motif of the type -KXKXX-COOH, which is known to be involved in the ADP-ribosylation factor (ARF)1-coat protein (COP) I coat (ARF)1-dependent membrane recruitment to Golgi membranes. Studies with isolated peroxisomes incubated in the presence of cytosol, adenosine triphosphate and GTP gamma S, indeed, provided evidence for specific binding of ARF and coatomer to peroxisomes. Expression of Pex11-1p in Chinese hamster ovary (CHO) wild-type cells led to a twofold increase in the number of peroxisomes, but expression in a temperature-sensitive CHO mutant, defective in coatomer, induced elongation and tubulation of peroxisomal structures, rather than numerical proliferation. The obtained results for the first time offer a mechanism explaining Pex11-1p-, as well as ARF- and coatomer-mediated peroxisomal vesiculation. Two models are presented that may explain how these observations fit in with peroxisome biogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call