Abstract
We study late-time behaviors of massive scalar fields in general static and spherically symmetric extremal black hole spacetimes in arbitrary dimensions. We show the existence of conserved quantities on the extremal black hole horizons for specific mass squared and multipole modes of the scalar fields. Those quantities on the horizon are called the Aretakis constants and are constructed from the higher-order derivatives of the fields. Focusing on the region near the horizon at late times, where is well approximated by the near-horizon geometry, we show that the leading behaviors of the fields are described by power-law tails. The late-time power-law tails lead to the Atetakis instability: blowups of the transverse derivatives of the fields on the horizon. We further argue that the Aretakis constants and instability correspond to respectively constants and blowups of components of covariant derivatives of the fields at the late time in the parallelly propagated null geodesic frame along the horizon. We finally discuss the relation between the Aretakis constants and ladder operators constructed from the approximate spacetime conformal symmetry near the extremal black hole horizons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.