Abstract

Dissolution of Hg(arene)(2)(MCl(4))(2) [arene = C(6)H(5)Me, C(6)H(5)Et, o-C(6)H(4)Me(2), C(6)H(3)-1,2,3-Me(3); M = Al, Ga] in C(6)D(6) results in a rapid H/D exchange and the formation of the appropriate d(n)-arene and C(6)D(5)H. H/D exchange is also observed between C(6)D(6) and the liquid clathrate ionic complexes, [Hg(arene)(2)(MCl(4))][MCl(4)], formed by dissolution of HgCl(2) and MCl(3) in C(6)H(6), m-C(6)H(4)Me(2), or p-C(6)H(4)Me(2). The H/D exchange reaction is found to be catalytic with respect to Hg(arene)(2)(MCl(4))(2) and independent of the initial arene ligand. Reaction of a 1:1 ratio of C(6)H(5)Me and C(6)D(6) with <0.1 mol % Hg(C(6)H(5)Me)(2)(MCl(4))(2) results in an equilibrium mixture of all isotopic isomers: C(6)H(5-x)D(x)Me and C(6)D(6-x)H(x) (x = 0-5). DFT calculations on the model system, Hg(C(6)H(6))(2)(AlCl(4))(2) and [Hg(C(6)H(6))(2)(AlCl(4))](+), show that the charge on the carbon and proton associated with the shortest Hg...C interactions is significantly higher than that on uncomplexed benzene or HgCl(2)(C(6)H(6))(2). The protonation of benzene by either Hg(C(6)H(6))(2)(AlCl(4))(2) or [Hg(C(6)H(6))(2)(AlCl(4))](+) was calculated to be thermodynamically favored in comparison to protonation of benzene by HO(2)CCF(3), a known catalyst for arene H/D exchange. Arene exchange and intramolecular hydrogen transfer reactions are also investigated by DFT calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.