Abstract

Animals can suppress their behavioral response in advance according to changes in environmental context (proactive inhibition: delaying the start of response), a process in which several cortical areas may participate. However, it remains unclear how this process is adaptively regulated according to contextual changes on different timescales. To address the issue, we used an improved stop-signal task paradigm to behaviorally and electrophysiologically characterize the temporal aspect of proactive inhibition in head-fixed rats. In the task, they must respond to a go cue as quickly as possible (go trial), but did not have to respond if a stop cue followed the go cue (stop trial). The task alternated between a block of only go trials (G-block) and a block of go-and-stop trials (GS-block). We observed block-based and trial-based proactive inhibition (emerging in GS-block and after stop trial, respectively) by behaviorally evaluating the delay in reaction time in correct go trials depending on contextual changes on different timescales. We electrophysiologically analyzed task-related neuronal activity in the primary and secondary motor, posterior parietal, and orbitofrontal cortices (M1, M2, PPC, and OFC, respectively). Under block-based proactive inhibition, spike activity of cue-preferring OFC neurons was attenuated continuously, while M1 and M2 activity was enhanced during motor preparation. Subsequently, M1 activity was attenuated during motor decision/execution. Under trial-based proactive inhibition, the OFC activity was continuously enhanced, and PPC and M1 activity was also enhanced shortly during motor decision/execution. These results suggest that different cortical mechanisms underlie the two types of proactive inhibition in rodents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.