Abstract
Area-selective depositions of SAMs have been demonstrated on SiO2/Si patterns, which are fabricated by synchrotron radiation (SR)-stimulated etching of SiO2 thin films on Si(100) substrates with SF6 + O2 as reaction gases and different types of masks. The SiO2 layer is made by thermal dry oxidation. A Co micro-pattern contact mask is fabricated by combining the photolithography and sputtering techniques, and a W submicron-pillar mask is deposited by using the focused ion beam-induced chemical vapor deposition (CVD). The SR-stimulated etching of SiO2 thin films on Si substrates is proven to have high spatial resolution, large selectivity, anisotropic etching, and low damage. The Co and W are found to be finer materials as SR etching masks. The etched patterns exhibit three-dimensional structures and the pattern surfaces are very flat and fit for depositing well-ordered monolayers on them. A dodecene SAM is deposited on the Si surface of the patterns, and trichlorosilane-derived SAMs (octadecyltrichlorosilane, and/or octenyltrichlorosilane) are deposited on the SiO2 of the patterns. The deposited SAMs are densely packed and well-ordered and are characterized by infrared spectroscopy, ellipsometry, and water contact angle measurements. Moreover, the surface of the octenyltrichlorosilane monolayer is changed from hydrophobic to hydrophilic by oxidizing the vinyl (–CH=CH2) end groups. This patterning of SAMs on SiO2/Si patterns will be a potential structure for fabricating novel silicon-based biosensors and in biomedical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.