Abstract

Montgomery Multiplication is a common and important algorithm for improving the efficiency of public key cryptographic algorithms, like RSA and Elliptic Curve Cryptography (ECC). A natural choice for implementing this time consuming multiplication defined on finite fields, mainly over GF(2m), is the use of Field Programmable Gate Arrays (FPGAs) for being reconfigurable, flexible and physically secure devices. FPGAs allow the implementation of this kind of algorithms in a broad range of applications with different area–performance requirements. In this paper, we explore alternative architectures for constructing GF(2m) digit-serial Montgomery multipliers on FPGAs based on Linear Feedback Shift Registers (LFSRs) and study their area–performance trade-offs. Different Montgomery multipliers were implemented using several digits and finite fields to compare their performance metrics such as area, memory, latency, clocking frequency and throughput to show suitable configurations for ECC implementations using NIST recommended parameters. The results achieved show a notable improvement against FPGA Montgomery multiplier previously reported, achieving the highest throughput and the best efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.