Abstract

Selective laser melting is an additive manufacturing technology used to fabricate metal parts characterized by complex geometries that are difficult or impossible to produce with conventional production methods. One of the major drawbacks of laser melting is the poor surface quality that typically is not satisfactory for functional applications. The aim of this work is to use areal analysis to characterize selective laser melting surfaces. The results highlight a marked variability and anisotropy that cannot be evaluated through traditional measurement. The building orientation and secondary finishing operations are analyzed and discussed. Findings demonstrate how areal analysis can be used to determine how to implement barrel finishing with the aim of reducing anisotropy and increasing surface quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.